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ABSTRACT Light fields enable increasing the degree of realism and immersion of visual experience
by capturing a scene with a higher number of dimensions than conventional 2D imaging. On another
side, higher dimensionality entails significant storage and transmission overhead compared to traditional
video. Conventional coding schemes achieve high coding gains by employing an asymmetric codec design,
where the encoder is significantly more complex than the decoder. However, in the case of light fields,
the communication and processing among different cameras could be expensive, and the possibility of
trading the complexity between the encoder and the decoder becomes a desirable feature. We leverage the
distributed source coding paradigm to effectively reduce the encoder’s complexity at the cost of increased
computation at the decoder side. Specifically, we train two deep neural networks to improve the two
most critical parts of a distributed source coding scheme: the prediction of side information and the
estimation of the uncertainty in the prediction. Experiments show considerable BD-rate gains, above 59%
over HEVC-Intra and 17.45% over our previous method DLFC-I.

INDEX TERMS Deep learning, distributed source coding, light field, uncertainty estimation, view
synthesis.

I. INTRODUCTION

IN THE pursuit of more immersive visual technologies,
Light Field (LF) imaging has risen as an exciting solu-

tion to capture rich scene information. LF imaging divides
traditional image acquisition by separating the light capturing
and image formation. More specifically, in traditional cam-
eras, light rays impinging the sensor are accumulated by a
pixel surface resulting in the loss of directional information
of the light rays. Conversely, LF imaging allows captur-
ing this additional information and consequently, it offers
novel post-capture functionalities such as refocusing and
aperture adjustment. However, LF imaging also entails a
considerable amount of information that needs to be effi-
ciently compressed. A typical LF image captured by LYTRO
Illum camera offers only a 0.25-megapixel resolution albeit

occupying about 218 megabytes of hard disk space (i.e.,
15 × 15 set of views, 10 bit, three colour channels).
Conventional video coding is designed as a hybrid

block-based scheme including prediction, transformation,
quantization and entropy coding [1]. The inclusion of the
prediction at the encoder side is the primary reason for the
superior coding performance compared to transform-based
coding. This framework fitted to a broadcast scenario is
designed to provide efficient decoding at the cost of heavy
computation at the encoder. On the contrary, there are sce-
narios where it is more desirable to have a power-efficient
encoder and transfer most of the computation to the decoder
side. These scenarios typically include low-power camera
systems, for example, in wireless networks or multi-view
video entertainment [2].
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Distributed Source Coding (DSC) is an alternative coding
paradigm which allows shifting the complexity from the
encoder to the decoder. The theoretical foundation of DSC
is based on the Slepian-Wolf theorem, which states that,
under some conditions, two correlated discrete sources can
be encoded independently and decoded jointly, with the same
rate as if the two sources were jointly encoded [3]. Later,
Wyner-Ziv extended this result to the case of lossy coding
of two jointly Gaussian sources, where the coding rate is
replaced by a Rate-Distortion (RD) function.
DSC has been explored extensively in the domain of video

coding, notably with the development of DISCOVER [4]
and VISNET II [5] codecs. In practical Distributed Video
Coding (DVC) [6] schemes, video frames are divided into
two groups: key frames and Wyner-Ziv (WZ) frames. Key
frames are encoded using traditional, hybrid coding schemes.
Conversely, WZ frames are initially estimated based on the
decoded key frames; this Side Information (SI), available
at the decoder, is then corrected through channel codes
requested from the encoder. Since generating parity bits
(e.g., syndromes [7]) is computationally much lighter than
the temporal prediction, the complexity cost at the encoder
is reduced by decreasing the number of key frames. This
framework has been later extended to Distributed Multi-
view Video Coding (DMVC) [8]. In the setups with a
large number of cameras operating in power-constrained
environments, DMVC can effectively reduce the complex-
ity of the encoder (eliminating inter-camera dependency and
frame buffering) and shift the prediction between neighbor-
ing views at to the decoder side [9]. DSC has been applied
to LF as well in the preliminary works [10], [11]. However,
distributed coding of LF has remained little explored
till now.
In our previous work [12] DLFC-I, we propose replacing a

typical optical flow-based prediction scheme with a learning
approach to generate high-quality estimates of WZ views
while considerably reducing the complexity of the encoder.
In this work, we build upon our previous work [12] by further
leveraging deep learning approaches for better estimation
of SI in the distributed coding scenario. More precisely,
we improve the view synthesis performance by considering
different arrangements of the reference view and we propose
a deep learning-based approach for the estimation of the
residual signal. Our contributions are as follows:

• Comparison of four arrangements of reference views,
more specifically Corner, Cross, Corner-In and
Cross-In,

• Comparison of three loss functions for the improvement
of view synthesis performance when the reference views
are distorted due to HEVC coding,

• A deep learning architecture for the estimation of the
residual signal.

Experiments show significant gains of the proposed
distributed light field coding scheme compared to the con-
ventional coding tools (operating at similar complexity at
the encoder side).

This paper is structured as follow. Section II describes
related work, including the coding of different visual modal-
ities using DSC, and deep learning-based view synthesis
approaches. In Section III, we explain our proposed vari-
ations for the view synthesis network as well as the
architecture for uncertainty modelling. Section IV presents
the results of the proposed scheme and the comparison with
state-of-the-art methods and the conventional coding tools.
Finally, Section V concludes the work.

II. RELATED WORK
We divide the related work into three parts: distributed source
coding, view synthesis and uncertainty estimation.

A. DISTRIBUTED SOURCE CODING FOR LIGHT FIELDS
DSC was initially used for LF coding by [10], where WZ
views are synthesized at the decoder using a geometry-
based image rendering from the available key views. To
achieve a higher RD performance, the transform domain
WZ coding is adopted to exploit better the spatial correlation
in [11]. A DMVC approach is proposed in [13]. It generates
multiple SIs utilizing temporal and inter-view redundancies.
Additionally, a robust fusion method is employed by fus-
ing likelihoods estimated from each SI. The approach can
be adapted for light field structures by substituting one
angular dimension in place of temporal dimension [12].
PhiCong et al. [14] utilize an adaptive strategy to skip WZ
decoding process if the synthesized view at the decoder is
estimated to have a minimum quality to avoid transmitting
bits for that particular view. In order to use existing DVC
tools, in [14] the LF views are first downsampled to QCIF
resolution and then converted to a pseudo video sequence by
utilizing a so-called Hybrid scanning order. Mukati et al. [12]
propose to use a view synthesis-based approach to synthe-
size light field views at the decoder utilizing only four key
views picked from the four corners of the LF in order to
reduce the encoding complexity radically. The results show
that leveraging high-quality synthesized views provide com-
petitive RD performance compared to the state-of-the-art
DMVC approach [13].

B. VIEW SYNTHESIS
The goal of view synthesis is to generate a novel view from a
given set of reference views. Recently, with the wide-spread
use of deep learning tools, emerging view synthesis methods
allowed the generation of higher-quality views from sparser
input sets. Kalantari et al. [15] present the first work on view
synthesis based on deep learning. The authors follow the tra-
ditional scheme for view synthesis, whereas the scheme is
factorized into the disparity estimation part, which provides
disparity map estimation used to warp reference images,
and merging of the warped referenced images. They pro-
pose a network which consists of two sequential networks:
the disparity network and the colour network. The disparity
network takes corner views of a light field image and the
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novel position of the view to be synthesized. Then, it esti-
mates the disparity of the novel view with respect to the input
views. The reference views are then backwarped to obtain
the estimates of the novel view and merged by the colour
network to obtain the final estimate. Srinivasan et al. [16]
tackle the problem of estimating the entire light field image
from a single image. In particular, the authors estimate the
disparity of each pixel in the image and backward warp the
input view using the estimated disparity maps to generate
a Lambertian light field image. Then, they compensate for
the errors due to the occlusions and non-Lambertian effects
by estimating these distortions using an additional network.
Finally, the proposed framework allows estimating accurate
disparity maps in an unsupervised manner by imposing con-
sistency among different maps. Although the work yields
interesting results, unsurprisingly, the quality of synthesized
views deteriorates considerably when moving away from
the centre view. More recently, Navarro and Sabater [17]
propose a novel view synthesis approach inspired by these
two approaches. The authors estimate a novel view from
the corner views as done in Kalantari et al. [15], but
they also estimate a disparity map of each corner view
and merge warped corners using the weights estimated
by a selection network. The approach provides superior
performance compared to other state-of-the-art approaches
and has the potential to operate on wider-baseline light
fields.

C. CORRELATION NOISE MODELLING
Accurate SI noise modelling is another important aspect
that influences the coding performance as it indicates the
reliability of the prediction to an iterative decoder such as
LDPCA. In DSC, the correlation noise is generally modelled
by a Laplacian distribution. The authors in [18], explore the
modelling of the correlation noise at different granularity
levels and conclude that a higher granularity level translates
to better RD performance, suggesting that the pixel-level and
coefficient-level perform best in an offline mode for Pixel-
Domain WZ and Transform-Domain WZ, respectively. In
online mode, the modelling is done adaptively based on
the local intensity variation utilizing motion compensated
residuals at different granularity levels, e.g., frame-level,
band-level and coefficient-level. In [19], the estimated resid-
ual is divided into different classes for each frequency
band depending on the estimated residual energy for each
block and the Laplacian parameter is found using pre-
calculated values in a lookup table. In [20], the Previously
Decoded Bands (PDB) are used to improve the noise model
by classifying the subsequent residual into two categories.
Additionally, a noise residue refinement step updates the
noise residual after each band is decoded. In [21], the resid-
ual frame is clustered into different classes using Fuzzy C
Means based on the residual energy. Contrary to [20], it
utilizes all the decoded frequency bands for improved noise
modelling.

FIGURE 1. Block diagram of transform-domain Wyner-Ziv encoder.

FIGURE 2. View splitting modes.

III. PROPOSED METHOD
In this section, we describe the proposed Distributed Light
Field Coding (DLFC) scheme. In our previous work [12],
we have utilized the view synthesis approach, proposed
by Navarro and Sabater [17], for the prediction of WZ
views. Here, we extend our previous work by considering
an improvement of the SI generation whose quality directly
correlates with the performance of the coding scheme. To
this extent, we explore various modifications in the view
synthesis scheme to obtain better prediction across different
bitrates and propose a deep learning scheme to estimate the
uncertainty of our prediction.
First, we give an overview of the DLFC scheme. Then, we

describe a set of enhancements to view synthesis training for
improved prediction. Next, we summarize noise modelling
in DLFC and propose a learning-based scheme to estimate it.
We conclude the section with the description of the training
procedure.

A. DISTRIBUTED LIGHT FIELD COMPRESSION
The proposed distributed light field coding scheme is based
on transform domain WZ coding with feedback channel [6].
The encoder is presented in Fig. 1. It takes an LF image

and extracts and divides views into two sets: key views and
WZ views. We select four reference views of an LF image as
key views according to one of the four arrangements shown
in Figs. 2 (b–e) and process them by a conventional coding
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FIGURE 3. Block diagram of transform-domain Wyner-Ziv decoder.

tool, while the rest of the LF are processed using a compu-
tationally more efficient WZ encoder. First, each WZ view
is transformed block-wise using the 4 × 4 Discrete Cosine
Transform (DCT) [22]. Then, the coefficients are quantized
using one of eight proposed quantization matrices [4]. In
the final step, the quantized coefficients are divided into
bitplanes and independently encoded using a Low-Density
Parity Check Accumulate (LDPCA) encoder [7]. The com-
puted syndrome bits of each bitplane are stored in the buffer
together with 8-bit Cyclic Redundancy Check (CRC).
At the decoder, key views are conventionally decoded

and provided to the SI generation block. The role of the
SI block is to estimate WZ view, Y , as well as its corre-
sponding residual signal, R̂. The SIs are then transformed
using the 4 × 4 DCT, resulting in coefficients CY and CR̂
respectively. The noise modelling block considers Y as a
noisy version of the original WZ view and utilizes resid-
ual coefficients CR̂ for Correlation Noise Modelling (CNM)
using the Laplacian distribution. The estimated distribution’s
parameters αCNM and the prediction coefficients CY are pro-
vided to the soft input estimation block (and together with
the information from the PDBs) used to calculate the bit-
wise conditional probabilities for each bitplane (soft input).
In order to decode bitplanes, the LDPCA decoder needs
part of the accumulated syndrome bits from the encoder and
the estimated soft input. Using the “message passing algo-
rithm” [23] the decoder iteratively computes the source bits.
Upon convergence or pre-defined number of iterations, the
procedure stops, and the decoder computes the syndrome
bits from the estimated source bits. If the computed syn-
drome bits matches the received syndrome stream and passes
CRC checksum test, then the decoding is considered as suc-
cessful. Otherwise, the decoder requests more bits from the
encoder. After successful decoding of all bitplanes, the quan-
tization intervals of a WZ view are obtained. In the final
step, the WZ view is reconstructed using the maximum like-
lihood approach utilizing estimated Laplacian distribution
and decoded quantization intervals [24]. The reconstructed
view is transformed back to the pixel domain using the
inverse DCT.

B. VIEW SYNTHESIS
1) BASELINE SYNTHESIS APPROACH

For the sake of completeness, we briefly describe the view
synthesis approach used in our previous work [12]. For a
more detailed description, the reader may also consult [17].
The view synthesis approach consists of three sequen-

tial networks: the feature extraction network, the disparity
estimation network and the selection network. The feature
extraction network takes corner views (of an LF image) and
the angular position of a novel view and extracts relevant
information for the following stage. The disparity estima-
tion network takes extracted features and the position of the
novel view and estimates the disparity map of the novel
view with respect to each corner view. Then, the corner
views are warped following the estimated disparity maps
and finally merged in the final estimation as a weighted
sum with weights obtained by the selection network. The
network is optimized using a two-parts loss Ll1−grad which
includes the L1 loss between the original image texture I
and the synthesized image texture Y and the L1 loss of the
gradients of the two textures:

Ll1−grad = ‖I − Y‖1 + 1

2
‖∇I − ∇Y‖1. (1)

2) CHOICE OF REFERENCE VIEWS

In the coding of LF images using traditional coding tools,
such as HEVC, much effort has been put into find-
ing an optimal coding order, and it has been shown
that the prediction from closer views provides better
performance [25]. A typical configuration for view synthe-
sis tasks includes a set of Corner views in an LF image as
they capture the widest field of view. In this paper, we con-
sider three more arrangements of the four reference views as
shown in Figs. 2 (c–e) to utilize the one for SI generation,
which provides the best prediction quality.

3) LOSS FUNCTION

Furthermore, we evaluate two loss functions which could
increase the performance of view synthesis, especially
with the decrease in the quality of reference views. More
precisely, we consider a perceptual loss based on high-level
feature maps of a deep neural network VGG utilized for
the image classification task [26] and a loss which includes
uncertainty modelling of the prediction [27].
The early layers of the VGG network give a response

highlighting low-level features of the input, while the deeper
layers capture higher semantic information [28]. We assume
that the inclusion of semantic reasoning will aid the view
synthesis network to generalize better in the case of distorted
input. We use pre-trained VGG-19, which is available in
the Pytorch framework and extract the activations from five
layers as it is typically done in the literature [29], [30] to
compute the loss:

Lvgg =
L∑

l

λl‖�l(I) − �l(Y)‖1, (2)
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where �l denotes the activations inferred from the layer l.
Kendall and Gal [27] propose a loss function that consid-

ers the uncertainty in the prediction for the depth regression
and semantic segmentation tasks. The loss function can be
considered as learned attenuation as it penalizes the samples
based on their prediction fidelity and provides a more robust
estimation. Although our task does not explicitly regress
depth, it highly depends on the estimated disparity maps at
the intermediate levels. Moreover, our view synthesis task
relies on the selection network to provide (soft) recommen-
dations of the final prediction at the pixel level. Therefore,
the robust estimation of the disparities should be beneficial
to the final prediction. We add a branch, which estimates
uncertainty on a pixel level, to the original network, and feed
both estimates, the prediction and the uncertainty, to a loss
function defined as a negative logarithm of the likelihood
of the Laplacian distribution. Note that it is also possible
to select a Gaussian distribution. However, we choose the
Laplacian as it is typically used to model the distribution of
a residual signal. The Laplacian loss-based version of view
synthesis approach is defined as follows:

Llaplacian = − 1

N

N∑

n=1

log

(
α(n)

2
exp−α(n)|I(n)−Y(n)|

)
, (3)

where N is the total number of pixels in a batch, α(n) is the
predicted Laplacian distribution parameter, and I(n) and Y(n)
are ground truth and predicted pixel values, respectively.

C. CORRELATION NOISE MODELLING
In an offline design process, the residual signal is used to
model the correlation noise in the prediction of the WZ
view. Typically, the Laplacian distribution offers a reasonable
fitting to the distribution of the correlation noise, where the
distribution’s parameter αCNM should describe the reliability
of the prediction. It has been observed that the statistics of
the correlation noise vary locally [18]. Therefore, estimating
the distribution at the finer level is desirable. As reported
in [18], the noise modelling at the finest level, i.e., pixel-level
in the pixel-domain WZ or coefficient-level in the transform-
domain WZ, offer optimal RD performance.
For example, the model parameter αCNM of each coeffi-

cient (u, v) is defined inversely proportional to the absolute
coefficients of residual signal CR(u, v) [18]:

αCNM(u, v) =
√

2

|CR(u, v)| . (4)

Due to the unavailability of the original WZ view at the
decoder, the actual correlation noise cannot be used to model
the distribution. Instead, the modelling is usually done by
substituting the actual residual signal with the difference in
the two predictions of the WZ view, as the agreement in
the two predictions represents the likelihood of the accu-
racy in the prediction. This approach can model well the
correlation noise in prediction at the coarsest level. As we
move towards the finer level, the noise modelling becomes

unreliable due to an insufficient number of samples required
for accurate modelling as well as the uncertainty in the
residual estimation itself. Therefore, several methods have
been proposed in the literature for robust correlation noise
modelling, e.g., [18], [20].
In our prior work [12], we have used the approach

described in [20] for the noise modelling using the estimated
residual signal. As for estimating the residual signal, we have
used a weighted average of the estimated intermediate resid-
uals corresponding to the four corner views used at the input
of the view synthesis method. The intermediate residuals R̂i
are calculated as follows:

R̂i(x, y) = Y(x, y) −Wi(x, y), (5)

where Y is the predicted view, and Wi is the warped view
corresponding to the reference corner view i. The weight of
each intermediate residual signal at the pixel level is assigned
with a higher value when its corresponding residual is lower.
We have noted that the RD performance still lacks in

performance compared to the case when the original resid-
ual is used for noise modelling in the offline process. We
propose to leverage a learning-based approach to optimally
estimate the residual signal using the predicted WZ view and
the warped residuals. In [18], for the robust noise modelling,
based on the local variation in the neighbourhood, the vari-
ances estimated from coarse-to-fine levels are assigned at the
pixel-level. The correlation between models across different
bands is also exploited for improved modelling in [31]. We
consider both these approaches to design a network that can
robustly estimate the residual signal.

1) PROPOSED NETWORK TO MODEL THE RESIDUAL
SIGNAL

As our scheme is based on transform domain WZ, the resid-
ual is initially transformed to calculate αCNM . The DCT
transformation requires a signed residual as an input. As the
absolute value of the transformed residual |CR| is utilized
in (4), we directly estimate |CR| using the network. In this
way, we can calculate the absolute value of the transformed
residual signal directly and simplify our prediction.
The proposed network consists of two parts that estimate

the absolute coefficients of the residual signal in two steps.
These two parts are detailed in Tables 1 and 2, respec-
tively. The first network extracts multi-scale spatial features
from the synthesized view and the estimated residual sig-
nals. The statistics of the residual signal remains mostly
constant across all the frequency bands. Utilizing them will
help the network to generalize well across different datasets
and frequency bands. Therefore, the first set of blocks of the
network FINT ,FMS,FG are trained to learn common features
across all the bands through weight sharing by utilizing 3D
kernels with depth size of 1. It is also important to consider
the difference in the properties of the residual signals of
different frequency bands. Therefore, we utilize another set
of layers in the block Fb

S that is uniquely trained to process
each frequency band b.
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TABLE 1. The network architecture of initial residual estimation. k denotes the size
of convolution kernel, In and Out denote the number of input and output channels and
Act. f. denotes the name of activation.

The block FINT extracts some intermediate features Fint
in the following way:

Fint = FINT

(
CY ,CR̂1

,CR̂2
,CR̂3

,CR̂4
,P,Q

)
, (6)

where CY is the transformed coefficients of the predicted
WZ view and CR̂i is the transform of the estimated resid-
ual corresponding to the cross-view i calculated using (5).
Additionally, the tensors P and Q consisting of the current
view index p and q, respectively, are passed to this layer for
the network to learn the view-position dependent features.
This results in a 3D input volume with 7 channels. The out-
put Fint is then passed to three parallel sets of convolutional
layers, FMS, that learn to filter the intermediate features at

TABLE 2. The network architecture of refined residual estimation (aided by decoded
bands). k denotes the size of convolution kernel, In and Out denote the number of
input and output channels and Act. f. denotes the name of activation. In this network
each layer is followed by batch normalization.

multiple levels, i.e., with kernels of different receptive fields.
These outputs are then concatenated and processed by FG.
Finally, the features specific to each frequency band b are
learned by Fb

S :

Fs(b) = Fb
S (FG(F3,F5,F7)). (7)

It should be noted that this network tries to learn the fea-
tures without exploiting inter-band correlation. It is shown
in [20], [21] that there exists some correlation in the resid-
ual signals for different frequency bands. Hence, exploiting
the correlation utilizing PDBs will improve the residual
estimation process.
The second network is composed of two parts. The first

part D processes the PDBs to exploit inter-band correla-
tion. Instead of passing decoded bands to the network,
the target residual CqR (the difference between the quan-
tized coefficients of the WZ view and the coefficients of
the prediction CY ) of these bands are computed and then
provided to the block D:

Fd(b) = Db(CqR ·M(b), b
)
, (8)

where M(b) masks out the non-decoded bands in CqR. The
features Fd(b) and Fs(b) are passed to the second part of
this network R which makes the final prediction β(b). The
network is trained such that β(b) represents the absolute
coefficients of the residual which can be used to calculate
αCNM(b) for each band b in the following way:

αCNM(b) =
√

2

β(b)
(9)

The LDPCA decoder can only decode the coefficient of
a WZ view up to some quantization level; therefore it is
intuitive to train a network for the quantized target resid-
ual CqR. In addition, the estimated residual plays a vital
role in the reconstruction part as it is used along with the
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synthesized view and the decoded bands to find a max-
imum likelihood solution. We have observed that in this
case, the true residual signal CR, i.e., the difference between
unquantized coefficients of the WZ view and the coefficient
of the prediction CY , results in the optimal reconstruc-
tion performance. Hence, two networks are trained for each
residual signal.
The second network in the proposed scheme utilizes the

quantized decoded bands. The statistics of decoded bands
vary from one quantization index to another. To achieve the
best performance, the networks are trained for each quan-
tization index M independently. Each layer in the residual
estimation network is followed by batch normalization.

D. TRAINING DETAILS
For training, we use the Flowers dataset [16] which con-
sists of 3343 images of plants. We select one hundred
images for validation and the rest of the dataset for train-
ing. At each training iteration, we randomly crop training
samples to the spatial size 192 × 192, randomly select the
position of the novel view, excluding the positions of the
corner views, and augment processed samples by apply-
ing gamma correction with the gamma value randomly
selected from the range [0.4, 1.0]. We observe the conver-
gence of the model on the validation set wherein we use
the full spatial size, select centre views only, and randomly
select the gamma value from the range [0.4, 0.5]. We use
ADAM optimizer with default parameters and set the batch
size to 10.
For training the network for residual estimation, we need

to provide the data in the transformed domain. A trained
model for the view synthesis network is used, which pro-
vides the prediction of the WZ view of spatial size 192×192,
which, after transformation, results in 48×48 spatial resolu-
tion. Therefore, the network is trained with batches having
48 × 48 block size for all the inputs. Considering the nature
of the residual signal, we have used the Laplacian distri-
bution as the loss function to train the residual estimation
networks for coding and reconstruction using LC and LR,
respectively.

LC =
∑

b

log βC(b) + |CR(b)|
βC(b)

, (10)

LR =
∑

b

log βR(b) +
∣∣CqR(b)

∣∣
βR(b)

, (11)

where β is the variance of the Laplacian distribution esti-
mated at the coefficient-level. The loss functions LC and LC
reach their optimal minima when βC = |CqR| and βR = |CR|,
respectively.
The networks are trained in Python using PyTorch frame-

work. Each view synthesis network is trained for 300 epochs
which takes around 15 hours on GeForce RTX 2080 Ti GPU.
Whereas, each residual estimation network is trained for 750
epochs which takes around 37 hours on Tesla V100 GPU.

IV. RESULTS
In this section, we describe the testing conditions and report
the performance of the proposed scheme in comparison to
relevant state-of-the-art schemes.

A. TEST CONDITIONS
In our previous work [12], we prepared the test set
EPFL-DAN following the recommendations given by JPEG
Pleno [32]. We note that the light fields in the Flowers
dataset used for training the networks are decoded using the
Lytro Power Tool (LPT) [33] and have different character-
istics than the light fields in EPFL-DAN decoded using the
Dansereau’s Toolbox [34]. Therefore, our model is likely to
perform better on LPT decoded datasets. Thus, we create
a new test set EPFL-LPT by decoding the lenslets in the
EPFL dataset [35] using LPT.

For experiments, we use three different datasets, out of
which two are decoded using LPT [33] (California and
EPFL-LPT datasets) and one decoded using Dansereau’s
toolbox [34] (EPFL-DAN dataset). The EPFL-LPT dataset
is composed of 8 LF images, as shown in Fig. 4(i), while
the California dataset is composed of 30 test LF images
used in [15]. The decoded LF images have 14 × 14 set of
views of 376 × 541 pixels. The dataset EPFL-DAN utilizes
the same set of 8 LF images as in EPFL-LPT but is decoded
using [34]. The resulting LF image provides a 15×15 set of
views of 434×625 pixels. In our experiments, we crop each
LF to central 7 × 7 set of views due to noticeable artefacts
at peripheral views, which would degrade the view synthesis
performance.

B. VIEW SYNTHESIS
In this section, we sequentially analyze the performance of
the view synthesis approach based on the variations proposed
in Section III-B and utilize the approach that generally per-
forms best in terms of objective quality for the SI generation
in the proposed DLFC scheme.
In the first experiment, we compare the performance con-

cerning the arrangements of the four reference views. For
each of the four arrangements shown in Figs. 2 (b–e), the
view synthesis network is independently trained. Table 3
provides the quantitative analysis for the performance of
the view synthesis network for each of the reference views
arrangement utilizing the three datasets described earlier.
Overall, it can be observed that the cross arrangements
performed better across all the datasets. Moreover, since
the view synthesis network is trained on LPT datasets, the
Cross arrangement performs better on the EPFL-LPT and
California datasets. Based on the superiority of Cross-In
arrangement on the EPFL-DAN dataset, it can be deduced
that this arrangement generalizes the light field structure bet-
ter. Generally, it can be observed for the datasets decoded
using LPT that significantly higher quality is achieved
across different reference view arrangements than the dataset
decoded using Dansereau’s toolbox, i.e., EPFL-DAN. This
comparison suggests that the trained models generalize well
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TABLE 3. Performance evaluation of four arrangements for view synthesis task
across three datasets in terms of PSNR (dB).

TABLE 4. Performance evaluation of three loss functions for view synthesis task on
Cross arrangement across three datasets in terms of PSNR (dB).

across different datasets but not across different LF decoding
schemes. For the rest of the evaluation, we consider the Cross
arrangement as the default arrangement for the proposed
approach due to its superiority on the LPT decoded datasets.
From Table 3, it can also be observed that even though the
inward variant of Corner arrangement improves performance
compared to the original variant, this trend does not repeat in
the case of Cross view arrangements. We explain this behav-
ior by considering the similarity between reference views
and the rest of the light field. Namely, by reducing the dis-
tance between the reference views, the prediction quality of
the in-between views should increase as they become more
correlated. Conversely, the quality of the extrapolated views
degrade with increase in their distances from the reference
views. Therefore, it would be beneficial to find an optimal
set of reference views for which the quality of synthesized
in-between views increases while the quality of extrapo-
lated views does not degrade considerably. Based on the
results presented in Table 3 it can be noted that a “sweet
spot” lies around Cross reference arrangement for datasets
decoded using LPT and Cross-In reference arrangement for
EPFL-DAN dataset.
Next, we explore two loss functions as proposed in

Section III-B. From Table 4, it can be observed that Lvgg
and Llaplacian versions underperform compare to the origi-
nal version Ll1−grad on LPT decoded datasets. On the other
hand, the evaluation of the EPFL-DAN dataset suggests that
some loss functions generalize better than others across dif-
ferent decoding schemes, e.g., Lvgg and Llaplacian. This result
motivates to further explore these variants for the distorted
inputs, which will be provided to the view synthesis network
at the decoder of the proposed DLFC scheme.
Table 5 provides a quantitative evaluation in the case of

distorted input views. We also compare three loss functions
in the Cross arrangement. Comparing Tables 4 and 5, we
observe in the case of undistorted inputs that the original
loss function Ll1−grad performs better compared to both Lvgg
and Llaplacian losses. In the case of distorted input views, we
note the same behavior with a small exception in the case
of the loss Llaplacian which seems to degrade relative quality
between different quality levels less, compared to the two
other loss functions.

TABLE 5. Quantitative evaluation of view synthesis approach given distorted Cross
arrangement reference views from the EPFL-LPT dataset in terms of PSNR (dB).

TABLE 6. Quantization parameters of the key views corresponding to four
quantization indices M = [1, 4, 7, 8] from the set in [4] to have consistent quality of
reconstructed views.

Although we can observe better generalization of Lvgg
and Llaplacian version across different datasets, these trends
do not repeat on the distorted datasets. Therefore, we adopt
the version of the network trained using the original loss
function Ll1−grad in subsequent experiments.

C. DISTRIBUTED LIGHT FIELD CODING
To analyze the RD performance, we utilize the EPFL-LPT
dataset. Firstly, the effective resolution of each view is set to
376×544 by zero-padding (governed by 4×4 DCT operation
in the transform-domain WZ codec, which demands that the
resolution of a view be a multiple of four) as the original
resolution is 376 × 541 pixels. After transformation, each
frequency band has an effective resolution of 94×136 pixels.
Since the bitplanes for each frequency band are encoded one
at a time by the LDPCA encoder, this results in a source
code of length 12784 bits. We design LDPCA codes for this
length following the procedure described in [7]. Only the
luminance channel is used to report the performance.
The four key views are decoded using HEVC Intra decoder

(HM reference software, v.16.22, with Range Extension
(RExt) mode and Main profile). The RD performance of
distributed coding schemes is evaluated at four different RD
profiles by selecting quantization matrices from [4] at quan-
tization indices M = [1, 4, 7, 8]. To have the same quality
key views and WZ views after the reconstruction, the QP
parameter in HEVC is selected to match the quality of the
reconstructed WZ view for each LF and quantization index,
as specified in Table 6.
In this section, we will utilize a naming convention for

clarity and designate our proposed approach as Cross-Net
in addition to DLFC since Cross arrangement of views
is utilized and the residual signal is estimated using the
network-based approach. To assess the proposed method’s
RD performance, we conduct ablation studies on varia-
tions of the distributed coding scheme. These variations are
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FIGURE 4. Thumbnails of light fields from the EPFL dataset [35].

FIGURE 5. RD performance comparison between four different variations of the proposed DLFC scheme based on the arrangements of the reference views shown in
Figs. 2 (b–e), at quantization indices M = [1, 4, 7, 8], using PSNR as distortion metric.

obtained using different arrangements of the reference key
views and different methods to estimate residual signals.
First, we consider different arrangements of the reference

key views as shown in Figs. 2 (b–e). Although the superior-
ity of the Cross arrangement of reference views is already
proven in the previous section, an RD performance compari-
son can further establish its supremacy when used alongside
the proposed residual estimation network. Fig. 5 plots the
RD performance utilizing different reference views arrange-
ments. With the exception of the Flowers light field, it can be
observed that Cross-Net generally outperforms methods with

different reference views arrangement and achieves higher
performance at all quantization index values.
Next, we study the effect of utilizing different methods for

estimating residual signals in the overall RD performance.
The first variation, in this case, can be adopted from our
previous work [12], which utilizes weights, calculated based
on the four independent residual estimates obtained from
each reference view, to estimate the final residual signal.
We denote this approach as Cross-Weighted when used
alongside the Cross arrangement of the reference views. As
another variation, we introduce Cross-Ideal, which utilizes
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FIGURE 6. RD performance comparison between different variations of the proposed DLFC scheme utilizing three different residual estimation methods, at quantization
indices M = [1, 4, 7, 8], using PSNR as distortion metric.

the ideal residual signal to set the upper bound of the achiev-
able performance. Fig. 6 acknowledges the improvement
achieved using the network-based approach Cross-Net to
estimate the residual signal over Cross-Weighted. However,
it can be inferred by looking at Cross-Ideal curves that
even with accurate residual estimation, the performance can
not surpass the upper bound set by it. Given this situation,
we can say that considerable improvement is achieved over
Cross-Weighted using Cross-Net.

1) COMPARISON WITH ANCHORS

To evaluate the performance of the proposed DLFC scheme,
we compare our performance with two distributed light field
coding schemes. Additionally, we provide comparisons with
conventional (non-distributed) coding schemes for light field
coding.
First, we compare the proposed scheme with our previous

work [12], referred to as DLFC-I. This scheme is different
from the proposed approach in multiple ways. Primarily,
the Corner arrangement of the reference views is used.
Additionally, the residual signal is estimated through math-
ematical manipulation of the individual residual signals
obtained by subtracting warped corner views from the syn-
thesized view. It further incorporates a strategy to classify
the residual signal based on the previously decoded bands
to model the Laplacian distribution adaptively. As in [12],
we also compare to the DMVC method [13] (referred
here as Checker-MultiSI), which presents the state-of-the-
art approach in this domain adapted for light field scenario.
Here, the views are split in a checkerboard pattern, as shown

in Fig. 2, to utilize horizontal and vertical adjacent neigh-
bors of a WZ view for its prediction. Contrary to DMVC,
an additional angular dimension is substituted in place of
the temporal dimension. Other than the higher encoding
complexity, the approach is expected to have a compet-
itive performance as it generates high-quality prediction
due to the narrower baseline among the available neigh-
boring views than the Cross arrangement of reference
views.
For comparison with conventional coding schemes, we

select HEVC-Intra as the first anchor to compress all the
views independently. The same HEVC configuration is uti-
lized for the key-views coding. Inspired by the comparison
provided in [37], we compare our approach with HEVC-
NoMotion, which is superior to the former approach because
it exploits temporal redundancy like HEVC-Inter, but the
motion search range is set to zero. The configuration pro-
vided in [37] has been used to configure the HEVC encoder
for HEVC-NoMotion. The encoder is provided with the 1-D
sequence of LF views as a pseudo video sequence, generated
by following a serpentine scanning order. A relevant anchor
to compare is the standard light field coding scheme pro-
vided by JPEG-Pleno [36]. We compare only to MuLE, i.e.,
transform-based mode of the reference software, as it has
been shown that it is superior compared to the prediction-
based mode, i.e., WaSP, on lenslet data [38]. MuLE utilizes
a 4D-DCT transform to concentrate the energy of the light
field image to a smaller region. This study provides a dis-
cussion and comparison of the two coding paradigms, i.e.,
distributed coding and conventional coding.
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FIGURE 7. RD performance comparison of distributed source coding and conventional coding schemes using PSNR as distortion metric at quantization indices
M = [1, 4, 7, 8], whereas, the quantization parameters specified in Table 7 are used for both HEVC plots.

Fig. 7 plots the RD performance of the above-described
schemes and the proposed method, utilizing PSNR as a
distortion metric. Table 7 quantifies the performance of the
distributed coding schemes in comparison to HEVC-Intra
using Bjøntegaard measure [39]. It can be observed that
the proposed scheme outperforms both distributed coding
architectures. The higher RD performance of the proposed
approach compared to the DLFC-I can be attributed to the
quality gains in the view synthesis approach and the improve-
ment in residual signal estimation using the network-based
scheme. In the case of Checker-MultiSI, we would expect
higher performance due to the availability of closer refer-
ence views for view synthesis. However, it requires half of
the views to be encoded using HEVC-Intra, thus reducing
the overall RD performance. Quantitatively, our approach
achieves 0.96 dB and 4.02 dB gains in BD-PSNR, and
17.45% and 46.66% reduction in BD-Rate, in comparison
to DLFC-I and Checker-MultiSI on average, respectively.
From Fig. 7, it can be observed that all the variations of

distributed coding significantly outperforms HEVC-Intra due
to the high quality of the synthesized views. This is evident
by observing that the difference in performance reduces as
the distortion increases. With a higher distortion, the com-
pression artefacts become significant in the key views, due
to which view synthesis can no longer exploit the com-
mon feature points in all the key views. Overall, it can be
observed from Table 7 that the distributed coding schemes
achieve roughly 50% − 65% improvement in BD-Rate and

4.5 dB - 6.2 dB gains in BD-PSNR. It may be noticed in our
previous work [12] that HEVC-Intra performed comparably
to the distributed coding schemes. After emphasizing that the
inter-view correlation is exploited in the distributed coding
scheme at the decoder, we highlight that the dataset EPFL-
DAN, used in the previous version, has inherent uncertainties
in its structure due to the utilized decoding scheme. Hence
it is challenging to predict and can be attributed to the lower
performance of distributed schemes in the previous work.
Comparing with HEVC-NoMotion and MuLE, we can

observe the clear downside of using distributed cod-
ing schemes. Quantitatively, HEVC-NoMotion and MuLE
achieve 4.18 dB and 3.52 dB gain in BD-PSNR, and 66.09%
and 57.34% reduction in BD-Rate, respectively, in compar-
ison to our approach. On the other hand, these schemes
involve computationally extensive operations and may only
be suited for broadcasting applications.
Although the compression performance of the distributed

coding paradigm lacks behind the best conventional cod-
ing schemes, we emphasize that the application areas and
goals are different and we focus on the encoding complex-
ity. Therefore, we discuss the performance of the proposed
scheme in comparison to the conventional coding schemes
in terms of encoding time. HEVC-Intra does have a complex
encoding scheme, even though it does not exploit inter-
view redundancy between the views. On the other hand, the
other two schemes, HEVC-NoMotion and MuLE, require
inter-view communication to exploit the redundancy at the
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TABLE 7. Average coding performance in terms of BD-PSNR and BD-Rate compared to HEVC-Intra.

FIGURE 8. Visual comparison between the outputs of stages in the proposed decoding scheme to decode the central view of the two LF sequences, i.e., Fountain and Vespa at
quantization index M = 8. The ground truth image and its corresponding zoomed patches are shown on the left. The synthesized and the reconstructed WZ view along with the
corresponding absolute errors (range normalized to 0.00 − 0.04) are shown in the next four columns. The zoomed patches are extracted from the highlighted regions in the
ground truth images.

encoder, which also results in additional overhead in the
encoding time and increases complexity of the encoding
architecture. For example, our measurements show that, on
average, encoding the light field with the proposed method
is 8 to 10 times faster compared to HEVC-Intra depending
on the quantization index, whereas it is 12 to 18 times faster
than HEVC-NoMotion. In comparison to MuLE, our scheme
is 20 to 30 times faster.
It is well-known that distributed coding schemes offer high

efficiency encoding by compromising on the simplicity of the
decoder [6]. The major contributor in the decoding complex-
ity in our implementation is the iterative LDPCA decoder.
Although the iterative LDPCA decoder provides near optimal
performance, due to its iterative nature it requires further
work on speeding up the iterative decoding for real-time
decoding applications. For instance, in the proposed scheme,
decoding of a WZ view can be 300 to 1300 times slower than
encoding it, depending on the quantization index. Neglecting
the fact that the implemented solution for decoding is
not optimized, in comparison to HEVC decoder, we have
noted that the implementation of the proposed decoding
scheme can be approximately 3 orders of magnitude
slower.

2) VISUAL ANALYSIS

Fig. 8 illustrates the outputs of the stages in the proposed
decoding scheme. In the second column, we can note that
the synthesized view provides accurate information about
the WZ view in most of the regions. Still, higher errors can
be observed in challenging areas such as non-Lambertian
surfaces and occluded regions. At the same time, the errors
in these areas in the reconstructed views are corrected as
observed by the limited error magnitude, which is an out-
come of utilizing successfully decoded WZ views for the
final reconstruction.

V. CONCLUSION AND FUTURE WORK
We proposed and evaluated deep learning models for dis-
tributed light field coding, focusing on the two most critical
aspects of side information generation: the prediction and
the residual estimation. The proposed models significantly
outperform state-of-the-art distributed coding schemes and
HEVC-Intra. We have shown that the Cross arrangement
of reference key views provides higher quality prediction,
which improved the overall RD performance compared to the
previous approach. Additionally, we propose a deep learning
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architecture that estimates the residual signal at the coef-
ficient level. We have shown that combining common and
specialized filters employed jointly with PDBs allows further
performance gains.
We have studied the challenge of distributed coding

systems to provide similar performance as offered by the con-
ventional encoding tools while maintaining the low encoding
complexity. In future, we aim to further minimize the
performance gap between the two coding paradigms by lever-
aging the latest techniques to model the correlation noise.
We further aim to explore light fields with wider base-
lines, e.g., from large camera arrays, where the constraint
on the encoding complexity is more relevant. Additionally,
we plan to eliminate the feedback channel requirement by
accurately estimating the required number of syndrome bits
at the encoder.
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