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ABSTRACT Recent advances in the computer technology has enabled many theoretical ideas in computer
vision to become practical also within camera technology. Light field technology aims at replacing the
traditional camera design by acquiring the intensity of light rays to realize advanced applications in media
andmedical industries. The abundant amount of information poses high processing, transmission and storage
requirements. Therefore, a need for efficient compression has gained researchers attention in this area.
We present EPIC, an efficient lossless compression scheme for light field images which extends CALIC by
exploiting light field structure.We have shown that the proposed scheme achieves around 6% improvement in
compression performance relative toHEVC-lossless anchor with a significant reduction in the encoding time.
We have also extended the proposed method for the near-lossless case which achieves similar rate-distortion
performance as HEVC-lossy anchor in addition to a high encoding efficiency and a guaranteed-error bound.

INDEX TERMS CALIC, efficient compression, light field, lossless, near-lossless.

I. INTRODUCTION
A light field (LF) is a set of intensities of the light rays ema-
nating from a scene and captured by a LF camera. This data
can be used to render images with different optical settings
such as focal lengths, aperture sizes and view-points. Apart
from these capabilities, recently LF has been used in various
practical applications such as novel view rendering [1], video
stabilization [2], seeing through foreground occlusion [3],
3D in-vivo imaging of middle ear [4], etc. To support image
rendering with different optical settings, the LF should be
available either at a server or the decoder. A challenge with
LFs is the enormous data size, which is a burden on the
storage device and the transmission channel. For example,
a LF image captured by LYTRO Illum (a commercial graded
LF camera) after decoding acquires 174.6MB of storage
space, for a spatial resolution of 434 × 625 pixels with 225
angular dimensions. Therefore, LF compression is a well-
known problem in the research community.

Due to the property of natural scenes and the structure of
the LF camera, each feature in the scene is captured by several
views of the LF, which results in highly redundant data. Thus
supporting the possibility to achieve high compression ratios
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in contrast to that of traditional images. This redundancy
can be easily observed as linear patterns or edges in Epipo-
lar Plane Images (EPI), an LF representation. In the pro-
posed scheme, we utilize the EPI representation to efficiently
exploit correlation in the LF structure with much simpler
processing.

LFs have found most of their applications in the media
industry which can tolerate distortion. Therefore most of the
compressors in the literature are based on lossy compression
schemes. Some applications can not tolerate distortion arti-
facts introduced by compression algorithms, such as medical
diagnosis, where the distortion may remove or obscure very
significant and life-saving information, while possibly intro-
ducing misleading artifacts into the image [5]. The lossless
LF compression schemes in the literature offer decent com-
pression ratios at the cost of hours of encoding time [6] and/or
complex computation [7]. For this reason, we have recently
proposed an efficient lossless LF compression scheme, EPIC
[8], which extends CALIC to exploit the LF structure for
enhanced compression performance. In this article, we extend
this approach to gain further efficiency in compression ratio
(5.3% reduction), processing time (71.3% reduction1) and
computational requirements. To achieve further compression

1Optimized EPIC-I requires 1.73 min. to encode a LF.
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FIGURE 1. Raw lenslet image captured by the Lytro Illum camera. In the
magnified view, the hexagonal grid can be observed, where each circle is
the projection of the rays approaching from the main-lens on the
photo-sensor.

gains, the proposed scheme has also been modified for the
near-lossless case. We have demonstrated that by using the
proposed approach we not only achieve better compression
performance than relevant schemes but also a reconstructed
LF that has better quality and max. absolute error.

The rest of this article is organized in the following man-
ner. In Section II, we present a brief overview of relevant
lossless image and LF compression schemes. In Section III,
we describe the proposed approach for lossless LF com-
pression. In Section IV, we evaluate the performance of the
proposed approach by comparing with the relevant lossless
compression schemes. Finally, we present the conclusion in
Section V.

II. LOSSLESS COMPRESSION OF LF IMAGES
One possible approach to losslessly compress LF images
is to utilize state-of-the-art lossless image compression
schemes. Generally, these schemes exploit the correlation
through prediction based on the local neighborhood and
adaptively encodes the prediction error through context mod-
eling. JPEG-LS [9] is popular due to its efficiency as it
utilizes only three-pixel causal neighborhood for prediction
and error modeling. On the other hand, CALIC [10] offers
higher compression than JPEG-LS utilizing a six-pixel causal
neighborhood for prediction and a complex context modeling
of error. To encode the LF with video encoders such as
AVC and HEVC, it has been rearranged as a Pseudo Video
Sequence through zig-zag or spiral scanning in [11] and [12],
respectively. These encoders can be configured for lossless
compression of the LF images.

The lossless compression schemes designed to exploit the
LF structure can be divided into two main categories to com-
press either raw lenslet images (Fig. 1) or the rectified LF uti-
lizing decoders such as in [13]. Among the initial schemes for
lossless LF image compression, a method was proposed by
Perra [14] to compress lenslet images. This scheme exploits
the inherent redundancy in the lenslet structure by estimating
the displacement between pixels that maximizes correlation

between adjacent blocks of pixels to optimize the prediction
process. Another lenslet compression scheme was proposed
in [15], where the pixels inside each microlens are vector-
ized through spiral scanning, subsequently the elements of
the vector are predicted using a sparse model based on the
neighboring microlens pixels and the previously decoded
pixels of the current microlens. In [16], Voronoi cells are
aligned to the micro-lens array and a predictor is designed
to exploit inter-view (within micro-lens) and spatial correla-
tion (among neighboring micro-lenses). These compression
schemes generally requires an additional LF rectification step
at the decoder. In addition, the compression gains are also
limited due to the unrectified structure of the lenslet image.
Therefore, the compression of the rectified LFs has gained
popularity in the research community.

Helin et al. [17], [18] sequentially encodes rectified LF
views following a spiral scan order as in [12]. Before encod-
ing, each view is segmented utilizing a corresponding quan-
tized disparity map and an image segmentation technique.
Then each segment is predicted using a sparsemodel based on
the dictionary formed by the corresponding segments in the
reference views. On the other hand, [19] utilized a simpler
adaptive prediction scheme. The small prediction residuals
are encoded using a context-based entropy encoder, where
the context is formed by applying image segmentation to the
reference image. Whereas, the large residuals are encoded
using a Golomb Rice algorithm. A threshold to distinguish
between small and large residuals is estimated by minimizing
the estimated codelength. Another set of schemes utilizes
minimum rate predictors (MRP) to find an optimal predictor
that can minimize the total code length [6], [20], [21]. In [21],
several LF representations are utilized to analyze the coding
performance of MRP, and it was concluded that pseudo video
and EPI representations gave a better performance. This work
is extended in [6] to exploit the LF structure by utilizing a
4D neighbourhood for prediction. The MRP-based lossless
compression scheme proved to give an optimal compression
performance, however the computation involved in finding an
optimal predictor makes the encoding process extremely slow
in both cases.

In [22], Schiopu et al. proposed to use a Convolutional
Neural Network-based architecture utilizing six causal neigh-
boring micro-lens blocks to predict the pixels in the cur-
rent micro-lens, whereas the prediction residuals are encoded
following CALIC’s encoding scheme. This method achieves
better performance than CALIC, however, the network has
around a million parameters which makes the prediction
process computational intensive for a regular PC. In [7],
the authors achieve lossless LF compression in two stages.
In the first stage, a network MPS-CNN synthesize the full LF
image from a sub-sampled LF encoded using REP-CNN [23].
Based on the six previously decoded and the two synthesized
micro-lens blocks, the second stage predicts the pixels in
the current micro-lens using another network PMSP-CNN.
Finally, the prediction residuals are encoded using themethod
described in [22]. There are more than 3 million parameters
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used in these two stages, in addition to it, the sub-sampled
LF is initially encoded using REP-CNN which further adds
to the computational complexity.

In the literature, it can be noticed that there is a strong
trade-off between coding efficiency and computational com-
plexity when it comes to lossless LF compression. In our
previous work for lossless LF compression [8], we have
addressed this problem by modifying CALIC to efficiently
exploit correlation present in the LF structure by introduc-
ing effective prediction and context formation techniques.
We have introduced an EPI Slope-based predictor, which
estimates the slope of the EPI line and subsequently predicts
the intensity using 1-D quadratic interpolation. Additionally,
the difference in the two EPI-based predictions was incorpo-
rated in the context formation process. This approach outper-
formed schemes utilizing general lossless image compression
methods as described earlier and gave a coding performance
comparable to [17] with a reasonable amount of encoding
time. In this article, we further improve the coding and time
efficiency by introducing changes in the predictor design and
context formation process.

III. PROPOSED METHOD - EPIC
CALIC is an efficient lossless coding scheme [10], which
encodes and decodes the pixels of the image in raster scan
order. Based on the number of distinct intensities of the
neighboring pixels, one out of the two modes, i.e. Binary and
Continuous modes, is selected as the mode of operation to
encode a given pixel. Continuous mode is the most important
part of CALIC, which has three main processing blocks,
i.e., intensity prediction using a non-linear predictor, error
energy estimation for adaptive entropy coding and context-
based bias cancellation from the prediction errors. CALIC
was designed to achieve optimal performance with traditional
images, however, it can not achieve optimal performance for
LF images due to its incapability to fully exploit the LF struc-
ture. In our approach, we present a list of modifications in
the continuous mode of CALIC (Fig. 2) to achieve enhanced
compression performance with the LF images while keeping
the computational complexity at a minimum.

With an assumption that the light rays captured by the
LF camera travels through a lossless medium at some time
instant, the LF can be parametrized using a 4D coordinate
system [24], [25]. Two parallel planes separated by some
distance f is commonly used to represent the intersecting light
ray. Hence, a light ray can be parameterized by L (s, t, u, v);
(s, t) denotes the point of intersection on the first plane (i.e.
camera plane), and (u, v) denotes the point of intersection
on the second plane (i.e. image plane). In this representa-
tion, the point (u, v) (spatial coordinates) marks the spatial
location for the intersecting light ray, while the point (s, t)
(angular coordinates) determines its angular orientation with
respect to the point (u, v). A fifth dimension is commonly
used to represent the intensities at different color channels.
A rectified LF has some well-known representations such as
multi-perspective images, macro-pixel array and EPI. These

FIGURE 2. Block diagram of the continuous mode of CALIC after the
proposed modifications.

FIGURE 3. Sample of a horizontal EPI extracted from the Bikes LF in [26].

representations can be obtained by sub-sampling and/or com-
bining the 4D coordinates in different forms.

As shown in Fig. 3, EPI representation consists of linear
patterns or edges, whose slope encodes the depth of the cor-
responding feature. This characteristic also reflects the redun-
dancy in the LF structure which can be efficiently exploited
using only a small neighborhood of pixels for prediction and
context formation. The EPI representation of a LF L(s, t, u, v)
is obtained by fixating an angular coordinate and a spatial
coordinate of the same orientation. Although, several EPI
representations can be obtained as described in [27], for
simplicity, we consider only two EPI representations; the
first is formed by fixing vertical components of angular and
spatial coordinates of the LF, i.e., Is∗,u∗ (t, v) = L (s∗, t, u∗, v)
and the second is formed by fixing horizontal coordinates,
i.e., It∗,v∗ (s, u) = L (s, t∗, u, v∗).

A. EPI-BASED PREDICTION
CALIC utilizes a non-linear predictor to estimate the intensity
at the current pixel (X ) using a causal neighborhood. This
predictor is designed to work well with regular images with
a high efficiency. However, it can not exploit the nature of
EPI. In this article, we propose an EPI-based predictor (EPIP)
to replace CALIC’s predictor for improved intensity predic-
tion by slightly increasing the complexity, which takes into
consideration the EPI structure by estimating the slope of the
EPI line2 passing through X followed by intensity prediction
using a quadratic interpolator based on the estimated slope.

2Here, EPI line is referred to the line passing through X in the direction of
pattern or the edge along which the intensity remains same.
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FIGURE 4. Neighboring pixels of X are divided using four overlapping
blocks of 2× 2 pixels, represented by dot-dashed squares of different
colors.

FIGURE 5. Filters used to estimate X and Y-components of the gradient
vector. Horizontal and vertical filters are named as Fx and Fy ,
respectively.

1) SLOPE ESTIMATION
The slope of the EPI line can be estimated by finding horizon-
tal and vertical gradient vectors using filters such as Roberts,
Sobel operator etc. As shown in Fig. 4, due to the raster scan
order of CALIC, only the pixels in the causal neighborhood
are available, therefore, the gradients can not be estimated
directly. Instead, by assuming that disparity maps are locally
smooth, we estimate the gradient vector at X by blending the
gradient vectors of the four neighboring regions (contrary to
the set of 3 neighboring regions in [8]), as shown in Fig. 4.
Each region r ∈ R is composed of a 2× 2 block of pixels Br ,
which is annotated by a dot-dashed square of unique color in
the figure. The gradient vector for each region r is estimated
by applying 2× 2 filters Fx and Fy, as shown in Fig. 5, to Br
as follows:

∇rx =
∑
n

Fx(n)Br (n),

∇ry =
∑
n

Fy(n)Br (n),

where n denotes the index of all the elements in the block
and the filter. ∇rx and ∇ry represents X and Y-components of
the gradient vector ∇r , respectively. Note that the estimated
gradient vectors should be perpendicular to the EPI line.

The angle of the estimated gradient vectors may differ
from one another due to the presence of noise, occlusion or a
feature at another depth in some regions. As demonstrated
in Fig. 4, some vector directions can be completely opposite
to other vectors due to the non-linear pattern variation. There-
fore, for robust slope estimation the gradient vectors of the
neighboring regions must be carefully incorporated.

FIGURE 6. Estimated gradient vectors are visualized in the Cartesian
coordinates. In this example, the vector ∇2 lying in the outlier region will
be filtered out for robust EPI slope estimation.

In contrast to [8], we remove any outlying vector, out of
the four estimates, by applying a constraint on the angle
θr of the gradient vector ∇r . The gradient vector with the
largestmagnitude is selected as the reference vector∇ref . Any
gradient vector which does not meet the following criteria is
removed, as illustrated in Fig. 6:∣∣tan (θr − θref )∣∣ < |tan θS | , (1)

where θref is the angle of the reference vector ∇ref and θS
is used to set the angular range to define the inlier region
keeping θref as its center. The optimal estimates for the slope
is achieved by setting θS = 45◦. The criteria in (1) can be
simplified as follows:∣∣tan (θr − θref )∣∣ < 1,

||∇r ×∇ref || <
∣∣∇r · ∇ref ∣∣ . (2)

Previously in [8], we averaged the estimated angles for
the final estimate. Here, a robust estimate for the gradient
vector ∇, perpendicular to the EPI line, is achieved through
the weighted sum of the inlying gradient vectors,

∇ =

∑
r+

ωr+∇r+ ,

ωr+ =
∣∣∇r+ ∣∣ · sgn (∇r+ · ∇ref

)
where, r+ ∈ R+, a subset of R which satisfy the condition in
(2) and ωr+ is the weight assigned to the gradient vector of
region r+. Here

∣∣∇r+ ∣∣ is the magnitude of the gradient vector
∇r+ . Assigning more weight to the vector with larger magni-
tude resulted in better slope estimation. A region of this form( r11 r12
r21 r22

)
=
(
a b
b a

)
, cannot be used to distinguish if the angle of

the gradient vector is 45◦ or −45◦. Instead of estimating the
gradient magnitude using the gradient components, defining
the gradient magnitude as |∇r | = |r11 − r22|+|r12 − r21| can
avoid the reliance of slope estimation on the gradient vector
using such regions. To detect whether a vector lies in the
inlier region or the inverted inlier region, the sign of the dot
product can be used, which is negative when the difference in
angle is more than 90◦. It is utilized in the weight equation

VOLUME 9, 2021 1127



M. U. Mukati, S. Forchhammer: Epipolar Plane Image-Based Lossless and Near-Lossless Light Field Compression

to invert a gradient vector if it lies in the opposite inlier
region. Finally, the slope of the EPI line can be determined
by dividing the X-component from the Y-component of the
gradient vector ∇.

2) INTENSITY PREDICTION
Ideally in a non-occluded region, the intensity remains the
same along the EPI line. We utilize this property to predict
the intensity using the slope estimated in the previous section.
As illustrated in Fig. 7, consider a distance axis whose origin
is at X and it is perpendicular to the EPI slope. Then the
intensity of a neighboring pixel should be the same as that of
its projection on the distance axis, which is denoted as Ij. The
distance from the origin to the projection of the neighboring
pixel positions dj can be calculated as follows:

dj =
∇ · Vj
‖∇‖

2
2

(3)

where j ∈ {N ,W ,NW ,NE} only, to avoid large errors in
prediction in the presence of distortion in the texture variation
and Vj is the xy-displacement of the neighboring pixel j with
respect to X (e.g. VNE = [+1,−1]). The basis vector of the
distance axis is defined as the estimated gradient vector ∇ in
(3), since both the vectors are perpendicular to the EPI line.

Given the intensity of the pixels Ij and their projected
distances dj, the intensity at X can be interpolated with the
polynomial curve fitting. We choose to fit the quadratic curve
to the set of points to capture any non-linearity in the texture
variation. We avoided using higher order polynomials to
prevent overfitting. Therefore, the relationship between the
projected distance and the intensity of a neighboring pixel can
be written as:

Ij = αd2j + βdj + γ (4)

In matrix notation, (4) can be written as follows:
I1
I2
I3
I4

 =

d21 d1 1
d22 d2 1
d23 d3 1
d24 d4 1


αβ
γ


I = DB

B =
(
DTD

)−1
DT I (5)

where, the coefficients inB is the least square solution for (4).
The origin of the distance axis lies at X , therefore the

y-intercept (γ ) in (4) provides the intensity at X . Equation (5)
can be simplified to find γ by:

γ =
(V1 × V2) · V3
(V1 × V2) · V4

, (6)

where,

V1 = (p4, p3, p2), V2 = (p3, p2, p1),

V3 = (q2, q1, q0), V4 = (p2, p1, p0).

pn =
∑
j

dnj , qn =
∑
j

dnj Ij.

FIGURE 7. The displacement of the neighboring pixels with respect to X
are projected on the distance axis. Along with the projected distances
and the intensities of the neighboring pixels, the intensity at X is
predicted using a quadratic interpolator.

It can be proven that γ in (6) is independent of scaling
the distance axis, therefore, the division with the squared-
norm of the gradient vector ‖∇‖22 in (3) can be omitted. In the
case, when distances are either only positive or only negative,
the intensity of the nearest neighbour in terms of the projected
distance is taken as the prediction. For robust prediction,
to account for the smoothness in the region, a weighted
average is taken between the prediction γ and an average of
intensities Ij, to assign more weight to the prediction when
the local activity is high.

Î = ωpγ +
(
1− ωp

) 1
n

∑
j

Ij, (7)

where,

ωp =
ν

ν + c
,

here, ν = dh + dv, the sum of horizontal variation (dh) and
vertical variation (dv) in the neighborhood. dh and dv are
estimated the same way as in CALIC using the neighborhood
of X in EPI representation. c is a constant for smoothness
in prediction. We use c = 3, which gives the optimal
performance.

3) ENHANCED PREDICTION WITH MULTI-ORIENTATION EPIs
The prediction process explained above is sensitive to the
presence of noise and occlusions, which can affect the accu-
racy of the slope estimation, thus resulting in incorrect predic-
tion. However, this process only utilizes an EPI representation
for prediction. The predictions from two EPI representations
can be incorporated to have a robust prediction to prevent the
performance degradation due to such uncertainties.

Under ideal conditions, occlusion is the main source of
error in slope estimation. A vertical occluder cannot occlude
scene points captured by It,v, similarly, a horizontal occluder
cannot occlude points captured by Is,u [27]. Thus, the predic-
tion from an EPI representation having its orientation closer
to the direction of occlusion should be assigned more weight
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in the averaged prediction. We have observed that a region
in one EPI representation which is more effected by occlu-
sion compared to the region in another EPI has higher local
variation. Hence, we assign more weight to the prediction
of an EPI representation having lower local activity in the
following manner.

Î =
νV ÎH + νH ÎV
νH + νV

νH = dHh + d
H
v νV = dVh + d

V
v (8)

where, νH and νV represents the local variations in the neigh-
borhood of X in Is,u and It,v, respectively.
The authors of CALIC observed that the variance of pre-

diction errors strongly correlates to the smoothness of the
neighboring region. Equation (8) also considers this observa-
tion as it assigns more weight to the prediction having higher
smoothness in the neighboring region.

B. CODING CONTEXT FORMATION
The relationship of the prediction error with the statistics of
its surroundings can be exploited to further reduce redun-
dancy in the LF by conditioning the prediction error on some
correlated source. This correlated source is formally denoted
as the ‘‘Error Energy Estimator’’ in CALIC. CALIC relies on
two elements to model this function, i.e., the smoothness of
the region and the previous prediction errors corresponding
to the adjacent neighboring pixels. It is observed that the
variance of prediction error is negatively correlated to the
smoothness of the neighboring region, therefore, the local
variation can serve as the magnitude of error energy. The
magnitude of previous prediction errors is also a vital esti-
mator of the error energy, since the errors in the prediction
tends to occur consecutively in the nearby region.

We propose to improve this model by utilizing the differ-
ence in the predictions as an estimator of error energy. From
the two EPI representations, two predictions are obtained
using EPIP for X . A small difference between these predic-
tions reflects the confidence in accuracy of the final predic-
tion, while the large difference points to the fact that at least
one of the predictions is incorrect, thereby increasing the
probability of making an error in the prediction. Combining
all these elements, we write our error energy model 1 as:

1 = a (νH + νV )+ b ε + c
∣∣∣ÎH − ÎV ∣∣∣ (9)

where, ε = |εN |+|εW |+ 1
2 |εNW |+

1
2 |εNE |, the sum of the pre-

vious prediction errors belonging to the spatial neighborhood
of X . The coefficients a, b and c balances the contribution
of each estimator in 1. In an offline design process, these
coefficients are optimized to minimize the squared difference
between 1 and the magnitude of the prediction error |ε|. For
(9), a = 1

6 and b = c = 1 returns an optimal error energy
estimator.

Therefore, by conditioning the predictor error on 1, its
entropy can be reduced. For time and space efficiency,
CALIC instead conditions the prediction errors on quantized

error energy levels. As in CALIC, we have quantized 1
using an 8-level quantizer. The bin edges of the quantizer are
optimized such that the conditional entropy

−

∑
d=[1..7]

∑
e

p(ε) log p (ε|qd ≤ 1 < qd+1) (10)

is minimized. For this purpose, a large dataset is prepared
consisting of (ε,1) pairs by utilizing LFs from the EPFL
dataset. Dynamic programming is used to find the optimal
bin edges, as described in [28]. The 8-level quantizer having
the following bin edges

q1 = 1, q2 = 4, q3 = 7, q4 = 11,

q5 = 18, q6 = 29, q7 = 58,

minimizes the expression in (10). The prediction error is
encoded through adaptive entropy coding by conditioning the
quantized error energy defined above.

C. CONTEXT-BASED ERROR BIAS CANCELLATION
Conditioning the prediction error on the error energy model
effectively reduces its entropy. However, it can not exploit the
dependence of the prediction error on the high order structure
of the neighboring region, such as, the texture pattern. Typ-
ically, the possible combinations of such contexts are very
large which leads to the problem of context dilution [29],
i.e., low number of samples for prediction error resulting in
unreliable estimates of the error probability for each context
p(ε|C). Instead of estimating the probabilities of the predic-
tion error, CALIC estimates the expectation of the prediction
error under each context E{ε|C}which can be reliably gener-
ated in this situation. The conditional expectation is then used
to remove any bias in the prediction Î .

CALIC utilizes a compound context to model the predic-
tion error, which is composed of 144 binary texture contexts
β and 4 error energy contexts δ. As can be seen in Fig. 7, EPIP
utilizes the intensities from the four neighboring pixels to
interpolate the intensity at X . As shown in Fig. 8, the EPI line
can pass through any one of the four octants. Then, in each of
the four cases, there will be a fixed number of intensities at the
left and the right sides of the distance axis, e.g., if the EPI line
is passing through octant Q1, then there will be one sample
on the left side of the distance axis, while the remaining three
samples will be on the right side of the distance axis. The
prediction is based on the least squares solution, therefore,
the quality of the prediction may vary from one octant to
another depending on the number of supports (intensities)
across the distance axis. A special case arises when the EPI
line is passing through Q4, then all the supports will be
at one side of the distance axis depending on the gradient
direction. Earlier in [8], for this situation, we have avoided the
extrapolation in EPIP by assigning the intensity of the nearest
pixel in terms of its distance from the origin of the distance
axis. Therefore, the quality is expected to be worse compared
to the cases when the line is passing through other octants.
This proves that the prediction quality or in another sense the
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FIGURE 8. The angle of EPI line can range from 0◦ − 180◦. This range is
subdivided into four regions (octant). Each octant signifies the quality of
the prediction using EPIP due to different number of projected
neighboring pixels of the two sides of the distance axis.

error energy is also a function of octant from which the line is
passing. Hence, we improve the compound context of CALIC
by incorporating a 2-bit octant index as context κ , forming a
compound context with 2304 possible combinations, which
is reasonable increase from 576 contexts, given the enormous
size of LFs.

Two independent compound contexts can be used to
robustly estimate expectation of the prediction error under
each compound context using Is,u and It,v, respectively.

E{ε|C (δ, β, κ)} =
SH (δ, β, κ)+ SV (δ, β, κ)
NH (δ, β, κ)+ NV (δ, β, κ)

(11)

where, E{ε|C (δ, β, κ)} is the expectation of the prediction
error under the compound context C (δ, β, κ). SH and SV
accumulates the prediction error under C (δ, β, κ), and NH
and NV contains the number of occurrence of C (δ, β, κ) for
Is,u and It,v, respectively. These variables are rescaled when
NH or NV reaches a maximum value as described in [10].

D. CODING SEQUENCE
EPIC will encode/decode the LF views sequentially. Based
on the available views at the decoder, the views are processed
with different modes of EPIC, as shown in Fig. 9. To decode a
view, EPIC requires its four neighboring views (two from an
adjacent horizontal and two from an adjacent vertical direc-
tion). If only two horizontal views are available at the decoder
then the view is decoded using EPIC-H, similarly the view
is decoded using EPIC-V if only two vertical views exists.
EPIC-H predicts the intensity and models the error based
on Is,u only, while EPIC-V relies on It,v. In the case when
two views are not available in either of the two directions,
then the views are independently decoded using standard
CALIC.

To encode a LF, our method first encodes the four bottom-
left views independently using CALIC, followed by encoding
of views from left-to-right in the bottom two rows using
EPIC-H and views from bottom-to-top in the left two columns
using EPIC-V. The rest of the views are encoded following a

FIGURE 9. The LF views are indexed by coordinates (s, t), while the pixels
in the corresponding view are indexed by (u, v ). The views are
represented as square blocks, while their color highlights which mode of
EPIC was used to encode it. Examples for encoding four views are shown
in the figure. The small black square represents the current view being
encoded and the connecting lines points to the views required to encode
them.

raster scan order starting from the bottom-left position of the
remaining views.

For better illustration, the examples are provided in Fig. 9,
reflecting modes of operation for coding different views.
For example, due to the absence of required neighbor-
ing views in horizontal and/or vertical direction, the view
(14, 1) is encoded independently using CALIC, whereas,
for view (3, 2) the mode EPIC-V is triggered which uti-
lizes the decoded views at (4, 2) and (5, 2) in its verti-
cal neighbors, while the view (11, 4) is encoded with the
main approach of this article EPIC utilizing four neighboring
views, i.e., (11, 3), (11, 2), (12, 4) and (13, 4).
It,v is a vertical EPI representation, which is typically

formed by stacking a vertical slice at index v from all the
views with index t , such that the slice from the top-most view
is at the top-level of the stack. As the slope of the line passing
through X in each EPI representation encodes the depth of
the scene, the two slopes should always be the same. It means
that these lines will ideally pass through the same octant each
time. Since, the quality of the prediction is influenced by the
octant from which the EPI line passes through, the quality
of the averaged prediction will be a function of octants.
To eliminate the dependence of quality on the octant, a quick
solution is to flip the EPI line vertically, then the EPI line
which was passing through the octants Q1, Q2, Q3 or Q4
will pass through the octants Q4, Q3, Q2 or Q1, respectively.
To realize this solution, it can be noticed from the examples
in Fig. 9 that the bottom two views are utilized instead of
the upper two views to form the causal neighborhood in It,v
representation.
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FIGURE 10. Thumbnails of LFs utilized for analysis from the EPFL dataset [26].

IV. PERFORMANCE EVALUATION
The proposed method is designed for coding dense LFs
(having thin baseline between consecutive views). Due to
the continuous nature of EPI lines in such LFs, it becomes
possible to estimate the slope of the EPI line using a small
neighborhood of pixels. To analyze the performance of
the proposed scheme, we have utilized dense LF datasets
from [26], [30]. The LFs provided in the EPFL dataset [26]
are captured using the Lytro Illum B01 camera. The raw
data captured by the camera is rectified using the LF tool-
box provided by [13]. The rectified LF has an angular
resolution of 15 × 15 and a spatial resolution of 434 ×
625. For compatibility with the baseline methods used in
this article, we have utilized 8-bit LF representation. The
camera captures color in RGB color space. The proposed
method does not exploit inter-channel redundancy, therefore
we thought, it is more appropriate to analyse the perfor-
mance on some decorrelated color space, such as YCbCr.
Therefore, the decoded 16-bit RGB LF is converted to an
8-bit YCbCr LF using the function provided in the JPEG
Pleno LF common testing condition document [31]. The
resulting uncompressed LF image requires 174.6MB of disk
space.

The HCI LF dataset [30] consists of synthetic LFs and
their corresponding disparity maps. The provided disparity
maps can be utilized as a ground truth to evaluate the per-
formance of the slope estimation in EPIP. From the dataset,
the sideboard LF, consists of significant disparity and texture
variations, hence it is used to analyze the performance of
EPIP.

For the experiments, we have utilized an HP ZBook
15 G4 with Intel Core i7-7700HQ processor clocked at
2.80GHz and 16 GB RAM. The proposed approach is imple-
mented with C++, roughly requiring a minute to encode a
LF. As CALIC, the proposed scheme is symmetric, therefore
a similar amount of memory and time is required to decode
a LF. The memory requirements of the proposed scheme is
extremely low, as the prediction is based on the few neighbor-
ing pixels requiring only to buffer few lines from the adjacent
four views at a time. In contrast to CALIC, EPIC utilizes the
sophisticated predictor EPIP (Sec. III-A) and richer context,

FIGURE 11. Evaluation of the effect of using ωr in terms of slope
estimation accuracy for reference vector selection.

which increases encoding time by 20% as can be observed
from Table 1.

A. EPIP PERFORMANCE ANALYSIS
The performance of EPIP is dependent on two important
parts; the slope estimation of the EPI line and the intensity
prediction based on quadratic interpolation. In an ideal case,
in order for the quadratic interpolator to predict accurately,
the slope must be precisely estimated. Thus, slope estimation
is a crucial step in EPIP.

The slope of the vector perpendicular to the EPI line repre-
sents the disparity d in that region. A local neighborhood with
an apparent feature is a major factor in deriving the accuracy
of the slope estimation. In other words Fig. 11 reveals that,
as the neighboring region gets smoother, the estimated slope
d̂ = ∇y/∇x becomes unreliable. To prevent this from causing
a poor intensity prediction, this problem is treated by assign-
ing more weight to the average of the neighboring intensities
in (7). However, there is still some contribution of the poor
prediction in the final estimate. In dense LFs, the disparity
between the consecutive views ranges from −4 to 4 for
LFs captured by the Lytro Illum camera and ranges from
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TABLE 1. Comparison of compression performance of different lossless image compression schemes. Average compression rate measured in
bits-per-pixel calculated for EPFL LF dataset (in 24-bit YCbCr format).

−1.5 to 1.5 for synthetic LFs in the HCI dataset. In principle,
the slope should lie within these bounds, but as we approach
toward the outer views of the LF the effect of lens distortion
becomes significant causing a violation to this bound. Hence,
as a remedy for noise and distortion, we favor the gradient
vector, out of the four gradient vectors, obtained in the slope
estimation process, closer to the zero disparity by using the
following weighting function:

ωr =
∇

2
rx

∇2
rx +∇

2
ry

(12)

where, ωr becomes one, when the disparity or slope of the
normal vector to the EPI line reaches zero

(
|∇

2
ry |/|∇

2
rx | ≈ 0

)
.

Therefore, instead of assigning the largest gradient vector as
the reference vector, we use the following equation to choose
the reference vector:

ref = argmax
r∈R

(|∇r | ωr )

The above equation utilizes the magnitude of the gradient
vector |∇r | and a weight function ωr as a bias to favor
the selection of the gradient vector closer to the zero dis-
parity, unless the magnitude of the gradient vector having
higher absolute disparity is relatively large. It can be observed
from Fig. 11 that reduction in error variance is achieved in
smoother regions using ωr (12), demonstrating the effective-
ness of this solution.

To demonstrate the superiority of prediction using EPIP
over the non-linear predictor of CALIC, we have designed
an experiment in which CALIC’s predictor utilizes the same
neighboring pixels from both the EPI representations, to gen-
erate two predictions, which are then fused together utilizing
(8). It can be visualized from Fig. 12, that EPIP is able to

reproduce sharp edges and texture in the scene with higher
accuracy compared to the CALIC’s predictor, thus, EPIP
improves the prediction quality by around 5.89 dBs.

B. LOSSLESS COMPRESSION
To evaluate the performance of the proposed scheme,
it is compared with lossless image and video compression
schemes, such as HEVC [32], AVC [33], JPEG-LS [9] and
CALIC [10], categorized as ‘‘General lossless schemes’’ in
this article. The proposed scheme is also compared with the
category of lossless compression schemes designed for LF
images, i.e. Context Modeling of Subaperture images (CMS)
[19], Multi-reference Minimum Rate Predictors (MMRP) [6]
and the previous version of EPIC (EPIC-I) [8].

For HEVC, two kinds of reference implementations are
available. Based on JPEG Pleno’s recommendation [31],
the X.265 encoder [34], used to generate the anchors for
HEVC, is designated as X265. The latest implementation
of HEVC (HM) is also used to report the performance
of HEVC and is referred to as HEVC in this article. The
libx264 implementation provided with open-source ffmpeg
library [35] is used to report the performance for AVC and is
denoted by X264. The LFs can be passed to these encoders
under different representations, i.e. lenslet, pseudo video
sequence or as stack of EPIs [21]. The authors in [21] reported
that HEVC achieves the best performance with the pseudo
video sequence representation of LF. Therefore, the views of
the 8-bit YCbCr LF obtained earlier, are rearranged into a
sequence of frames through spiral scanning, then stored in
the yuv file to be processed using one of the above encoders.

To obtain optimal LF compression performance of CALIC
and JPEG-LS, an EPI representation is used [21]. In this case,
the LF is stored by vertically stacking all the horizontal EPIs
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FIGURE 12. Performance comparison of pixel-wise prediction using EPI representation between (a) CALIC’s predictor and (b) EPIP, the proposed
predictor. The ground truth is provided in (c).

in the LF, such that the resulting image has 97650 × 625
pixels. CALIC is limited to encode a single channel image,
therefore each channel in YCbCr is encoded separately.

To encode the LF, these encoders are configured as follows:
• X264: ffmpeg v2.8.15, constant rate factor: 0 and preset:
very-slow.

• X265: HEVC v3.4, constant rate factor: 0, preset: very-
slow, lossless flag: enabled and profile: MAIN444-8.

• HEVC: HM reference software, v16.22, configuration
file: encoder_randomaccess_main_rext.cfg. Special
configurations: CostMode: lossless, QP: 0, Transquant-
BypassEnable: 1, CUTransquantBypassFlagForce: 1,
InputChromaFormat: 444 and FastSearch: 1.

• JPEG-LS: JPEG v3, lossless with scan interleaved mode
(-ls 0) and bypass colour transformation (-c) enabled.

• CALIC: executable available online [36], max. absolute
error: 0.

In the YCbCr color space, the nature of the color com-
ponents is different from the luma component, i.e. the color
channels are relatively smooth compared to the luma channel.
Therefore, to yield further compression using the proposed
scheme, we redefine the quantization levels in Sec. III-B for
the color components as:

q1 = 1, q2 = 4, q3 = 6, q4 = 8,

q5 = 11, q6 = 16, q7 = 27.

In Table 1, the compression performance of the gen-
eral lossless schemes are presented. Utilizing the same
LF representation (EPI), the proposed scheme achieves
8.3% and 12.1% improvement in compression, but with a
slightly higher encoding time, in comparison with CALIC
and JPEG-LS, respectively. Among the frame-based lossless
compression schemes, X264 proved to be more computation-
ally efficient than X265 and HEVC. The compression perfor-
mance of HEVC is around 5%better thanX264 andX265, but

it is ∼300× and ∼4× slower in encoding a LF, respectively.
On the other hand, the proposed scheme achieves better
compression performance than all the three schemes (X264,
X265 and HEVC). It achieves 6.3% improvement in com-
pression compared to HEVC, while being ∼53× faster. The
proposed scheme reduces the bit-rate by 11.3% in compar-
ison to the fastest X264 encoder at the cost of ∼4× higher
encoding time.

We compare the performance of the proposed and the
other lossless LF compression schemes, to assess the per-
formance of the proposed scheme among the approaches
exploiting the LF structure. For this purpose, the schemes
CMS [19], MMRP [6] and EPIC-I [8] are utilized. Since
EPIC is based on a highly efficient lossless compression
scheme, CALIC, it is much simpler in computation than CMS
and MMRP. Therefore, it is ∼6× and ∼936× faster than
CMS andMMRP, respectively. Furthermore, it achieves 5.8%
higher compression than CMS. MMRP achieves the highest
compression among all the approaches, which exploits redun-
dancy within LF structure using Minimum Rate Predictors,
at the cost of hours (> 15hrs) of encoding time for a single
LF. However, our scheme achieves outstanding compres-
sion in reasonable amount of encoding time. In contrast to
EPIC-I [8], the new method improves the compression by
5.4% through the improvements in prediction and context
modeling. The newmethod is also more efficient in space and
time compared to the previous one, due to the improvement
in the efficiency of the predictor and buffering few lines of
views at a time.

HEVC, MMRP and CMS are asymmetric coding schemes,
since the decoder do not have complex prediction opti-
mization blocks which highly reduces the decoding time.
Therefore, these coding schemes are feasible for broad-
casting applications, where the data is encoded once and
decoded several times. Whereas, to decode the bitstreams
generated by JPEG-LS, CALIC and the proposed scheme,

VOLUME 9, 2021 1133



M. U. Mukati, S. Forchhammer: Epipolar Plane Image-Based Lossless and Near-Lossless Light Field Compression

FIGURE 13. Rate-distortion performance comparison of near-lossless compression schemes using σ ∈ {1,2,3,4,5} and lossy mode of
HEVC with QP ∈ {7,10,15,20}.

the decoder needs to replicate the prediction and context
formation process at the encoder, which depends on the pre-
viously decoded pixels, therefore, the decoding time is fairly
much the same as the encoding time.

C. NEAR-LOSSLESS COMPRESSION
Due to the uncertainties in the LF structure, it can be ideally
compressed losslessly bounded by its entropy. In other words,
the uncertainties become a bottleneck in achieving higher
compression. Compromising on the constraint of lossless
compression, uncertainties can be avoided up to some extent,
thus helping to achieve higher compression.

The proposed lossless method for LF compression can be
extended to near-lossless coding by applying uniform quanti-
zation to the prediction error to reduce the error energy, hence
reducing the entropy. As in JPEG-LS, the near-lossless case
is linked to a parameter σ which specifies the max. absolute
error in the final reconstruction (This is identical to the inf-
norm of the reconstruction error). This parameter σ can be
used to set the tradeoff between the compression ratio and the
reconstructed quality. The prediction error ε can be quantized
as follows:

Q [ε] =
⌊
ε + σ

2σ + 1

⌋
To analyze the performance of the proposed approach in

near-lossless mode, it is compared with the near-lossless
mode of CALIC and JPEG-LS with the same configuration
as described for lossless modes but now applied for the near-
lossless configuration with σ . In CALIC, σ can be defined
by passing Max. Absolute Error as the input argument, while
−m flag is used to set σ for JPEG-LS. Besides the anchors
utilizing near-lossless compression schemes, a comparison
with HEVC is also provided to assess the rate-distortion per-
formance of the proposed scheme in the near-lossless mode.
In this scenario, HEVC is configured to encode with very low
QPs to achieve high quality reconstruction that is comparable
to the quality obtained using near-lossless modes. HEVC
does not set bounds on the absolute error as near-lossless

TABLE 2. The max. absolute error σ̂ of HEVC for quantization parameters
used in Fig. 13.

schemes. Although, it is possible to gain a higher rate-
distortion performance using the proposed scheme by violat-
ing the condition of max. absolute error, this comparison will
lead to discern the effectiveness of the proposed scheme even
with this bound. Here, the HEVC encoder utilizes HM refer-
ence software, v16.22 and randomaccess_main_rext config-
uration and lossy mode.

Four LF images, i.e., I01 Bikes, I02 Danger de Mort,
I09 Fountain & Vincent and I04 Stone Pillars from the EPFL
dataset are utilized to evaluate the rate-distortion perfor-
mance of the described schemes in the near-lossless case. As
expected due to improved prediction and enhanced context
formation, it can be observed from Fig. 13 that, EPIC outper-
forms CALIC and JPEG-LS for all LF sequences.

From Fig. 13, it can be observed that the proposed EPIC
has a similar performance as HEVC. With an increase in σ ,
the prediction process in EPIC gets affected by the higher
error energy in the neighboring pixels, thus the reduction
of EPIC’s performance in comparison to HEVC with an
increase of σ is evident. HEVC gains higher quality at the
cost of significant increase in encoding time, e.g. to increase
the quality by decreasing QP from 20 to 7, the encoding
time roughly increases from 30 minutes to 90 minutes. The
max. absolute error in case of HEVC is reported in Table 2.
It can be observed that the measured σ̂ for HEVC varies
across different sequences which suggests that the value
is highly dependent on the scene complexity. Additionally,
the proposed method does not only offer a guarantee of an
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error-bound but also a similar quality reconstruction of LF in
a reasonable amount of time. Furthermore, it may be observed
that even the σ̂ of HEVC at the lowest QP exceeds all error
maxima for the near-lossless modes.

V. CONCLUSION
We have proposed an efficient lossless compression scheme
for dense LF images which exploits the LF structure by mod-
ifying CALIC. The proposed scheme takes advantage from
the simple nature of EPIs for efficient prediction and context
formation. We have demonstrated that the proposed method
provides good lossless compression performance, better than
most of the relevant schemes (roughly 6% improvement
compared to HEVC-lossless), while remaining highly effi-
cient in terms of computational time (53 times faster than
HEVC-lossless) and memory requirements. The effective-
ness is also demonstrated for the near-lossless case, as the
proposed method is superior both in required rate and quality
for the reconstructed LF image in comparison to relevant
schemes. It turns out to achieve comparable compression
performance as HEVC in the high quality region, while being
highly efficient in computational time and maintaining a low
max. absolute error.
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